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The existence of universal similarity of the fine-scale structure of turbulent velocity 
fields and the validity of the original Kolmogorov local similarity theory and the later 
reformulations were investigated. Recent studies of the fine-scale velocity field for 
many different flows, e.g. grid flows, wakes, jets and the atmospheric boundary layer, 
are shown to provide considerable evidence for the existence of Kolmogorov normal- 
ized spectral shapes which are universal in the sense that they describe the high wave- 
number spectral behariour of all turbulent flow fields with a similar value of the turbu- 
lence Reynolds number RA. The normalized spectral shapes vary with RA in a manner 
consistent with the later reformulations. The Reynolds number dependence of the 
normalized spectra is demonstrated for the RA range from about 40 to  13000. Expres- 
sions for the Kolmogorov normalized spectral functions are presented for three values 
of R,. Also revealed in this study is the importance of considering effects on spectra 
caused by deviations from Taylor’s approximation in high intensity turbulent flows. 
Lumley’s (1965) model is used to correct the high frequency portion of the measured 
one-dimensional spectra for these effects. An analytical solution to  Lumley’s expres- 
sion is presented and applied to  the data. 

1. Introduction 
For many years a number of investigators have attempted to measure the high 

mavenumber region of the one-dimensional spectra of the velocity-component fluctua- 
tions in various turbulent shear flows. Knowledge of the fine-scale structure is import- 
ant as a basis for developing new turbulence theories, as well as testing existing ones, 
and for other applications such as the inertial-dissipation and direct-dissipation 
techniques for estimating the turbulent flux of momentum in the atmospheric surface 
layer (Champagne ef al. 1977). 

The statistical properties of the fine-scale structure of the turbulent velocity field are 
a particular area of turbulence research where significant data are still lacking. The 
validity and/or limitations of the universal similarity theory of Kolmogorov ( 1  941) 
and the refinements by Kolmogorov (1  962), Oboukhov (1962) and Yaglom (1966) are 
still under investigation. The spatial randomness of dissipation, not considered in the 
early universal similarity theory, was accounted for in the subsequent refinements or 
new similarity framework. Kolmogorov’s similarity theories are one of the simplest, 
yet most powerful, parts of turbulence theory and therefore further accurate and 
relevant data regarding their validity should be obtained. 

As the similarity theories are formulated for high Rsynolds number velocity fields, 
experimental investigation of their validity should be carried out in the highest 
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Reynolds number flows available. An example of such a flow is the atmospheric 
boundary layer, which provides turbulence Reynolds numbers an order of magnitude 
larger than those obtained in the laboratory. Further, as Wyngaard & Tennekes 
(1970) have shown that within the new similarity framework the fine-scale structure is 
Reynolds number dependent, the investigation should include data covering a wide 
range of R.eynolds numbers to determine the possible dependence. The purpose of the 
present study is to provide some new data on both the atmospheric turbulent boundary 
layer and various laboratory flows, and to examine these data together with already 
existing data for evidence of universal behaviour and local isotropy in the fine-scale 
structure of the turbulent velocity field. 

2. Theoretical and experimental background 
The local similarity or universal equilibrium theory predicts the existence of an equi- 

librium range of (high) wavenumbers which is independent of the energy-containing 
range of wavenumbers or large-scale features of the flow when the Reynolds number 
is large enough. Kolmogorov’s (1941) original theory consists of two hypotheses 
concerning the fine-scale structure or equilibrium range of wavenumbers in turbu- 
lence of sufficiently large Reynolds number. The first hypot,hesis states that  the motion 
associated with the equilibrium range of wavenumbers is isotropic and uniquely 
determined statistically by E ,  the viscous dissipation of turbulent energy, and v, the 
kinematic viscosity. A transformation of space and time to co-ordinates normalized 
by the Kolmogorov length 7 = (v3/e)4 and time ( v / E ) ~  should reduce the probability 
density functions describing the small-scale turbulence to universally similar forms, 
as well as all statisbical paramet,ers derived from the probability laws. I n  particular, 
the one-dimensional spectrum function takes the form 

where 

u1 is the velocity fluctuation component in the mean flow direction xl. For high enough 
Reynolds number, the Kolmogorov normalized spectrum function (DD,(yk,) should be a 
universal function valid for all turbulent velocity fields in their equilibrium range of 
wavenumbers. The Reynolds number used to characterize the turbulence is R,, 
defined by 

(3) 

where A, is the transverse Taylor microscale (Corrsin 1959). 
The second hypothesis postulates the existence of a wavenumber subrange within 

the equilibrium wavenumber region where the effects of viscosity are negligible. Within 
the subrange, called the inertial subrange, transfer of energy by inertial forces is the 
dominant process. Dimensional analysis leads to  the renowned - 5 law 

Fl(k,) = “1 EPk,B, ( 4 )  

where a1 is a universal constant. 
Kolmogorov (1962) refined his original theory to  take into account t,he spatial 

randomness or variability of the dissipation rate. Kolmogorov’s modified or third 
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hypothesis states that the locally averaged dissipation rate is a lognormal random 
variable with variance 

a 2  = A +pun ( L / r ) ,  L < r < q-1, 151 

where 16 is a universal constant, L is the integral scale of the flow, A is a constant de- 
pending on flow geometry, and r is the characteristic length of the averaging volume. 
Yaglom (1966), using assumptions regarding the characteristic length scales of the 
averaging volumes, deduced a modified inertial-subrange form to be 

Fl(kl) = C,&,Q(Lk,)-)p, (6) 

where C, is a constant. 
An essential part of these theories is the postulate of local isotropy; that is, at 

sufficiently large Reynolds number, the small-scale turbulent structure is isotropic 
even when the large-scale structure is not. Many kinematic conditions are imposed on 
the turbulent velocity field by the assumption of local isotropy. Some of these con- 
ditions are that the odd moments of variables such as aui/axi, i +j, are identically 
zero and that the streamwise deriva,tives of the velocity components are related by 

As a result the average rate of energy dissipation can be obtained from 

Further, according to the isotropic assumption the spectra of the cross-stream velocity 
components should satisfy the relations 

'%(kl) = ' 3 ( h )  = $[Fl(k l )  - kl aFl(kl)/akl]* (9) 

The criteria used most widely to test for the existence of local isotropy result from 
combining (9) and (4), which gives 

FZ(kl) = F 3 ( k l )  = $Fl(kl) (10) 

for the inertial wavenumber region. 
Precise experimental support for local similarity of the velocity fields is not avail- 

able, even thoughin the early 1960sitwas shown that theavailable turbulence measure- 
ments were consistent with Kolmogorov's original theory within the limited accuracy 
available (Grant, Stewart & Moilliet 1962; C. H. Gibson & Rchwarz 1963: M. M. 
Gibson 1963). The -p inertial-subrange form (4) was observed in fully developed 
turbulent pipe flow by Laufer (1954), in the atmospheric boundary layer by Taylor 
(1955), in a tidal channel by Grant et al. (1962), in an axisymmetric jet by M.M. 
Gibson (1963), in the atmospheric boundary layer over the open ocean by Pond, 
Stewart & Burling (1963) and Pond, Smith, Hamblin & Burling (1966), in a fully 
developed turbulent channel flow by Comte-Bellot ( I  965), in a laboratory boundary 
layer by Bradshaw (1966), in the turbulent, wake of a circular cylinder by Uberoi & 
Freymuth (1969), in a nearly homogeneous uniform shear flow by Champagne, Harris 
& Corrsin (1970), and in the atmospheric boundary layer by Gibson, Stegen & Williams 
( 1  9701, Kaimal et al. (1 972), Boston &, Burling (1972), Busch (19731, WilIiams & 
Paulson (1976) and Champagne et uZ. (1977). In many of the above cases, however, the 
-$-law form extended far into the lower wavenumher region where the flows were 
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clearly aiusotropic from consideration of various necessary conditions for the existence 
of local isotropy (Corrsin 1957; Lumley 1964), and where (9) was not satisfied. This has 
led to the conclusion that the apparent existence of a Kolmogorov - 8 law, even with a 
proper ‘universal ’ constant magnitude, is a relatively insensitive indicator of local 
isotropy (Bradshaw 1967; Champagne et al. 1970; Busch 1973). 

The spectral relations ( I  0 )  were apparently verified for a jet flow by Gibson (1963), 
although Comte-Bellot (1 965) found F3/Fl to be about 0.9 in fully developed channel 
flow. Elderkiii (1966) and Weiler & Burling (1 967) indicated that their spectral data for 
the atmospheric boundary layer were not consistent with (10). Champagne et al. (1970) 
found reasonable agreement with the isotropic spectral relations (9) in their low Rey- 
nolds number flow. More recently, Kaimal et al. (1972) found agreement with (10) in 
the atmospheric boundary layer under unstable conditions and an approach to (10) 
under stable conditions, but their 2 spectral measurements were confined to the lower 
wavenumber end of the apparent inertial subrange by use of a sonic anemometer with 
a spatial resolution of about 20 cm. Several other atmospheric results pertaining to the 
validity of (10) are discussed in the paper of Kaimal et al. as well as by Busch (1973). 
Direct experimental verification of local isotropy in laboratory or atmospheric flows 
through measurements of the various statistics presented above is a difficult task. 
Velocity sensors with spatial resolution to about the Kolmogorov length scale 7, 
typically of the order of 1 mm in atmospheric boundary layers and 0.1-0.2 mm or 
smaller in most laboratory flows, are necessary to measure velocity derivatives 
adequately. Some of the other problems associated with measuring fine-scale properties 
of turbulent velocity fields are discussed by Tennckes & Wyngaard (1972). As a result, 
few of the velocity-derivative statistics have been satisfactorily measured, especially 
in high Rsynolds number flow fields. 

Experimental investigations of the validity of the refined similarity theory have been 
performed by many workers, including Gibson et al. (1970), Stewart, Wilson & Burling 
(1970), Wyngaard & Tennekes (1970), Sheih, Tennekes & Lumley (1971), Wyngaard 
& Pao (1972) and Kuo & Corssin (1972), whose results would tend to favour the refined 
formulation. The universal constant y has been determined to be roughly 0-5 (Gibson 
& Masiello 1972), so the wavenumber exponent in the modified inertial-subrange form 
(6) changes from - 8 by -&, which is certainly a difficult if not impossible change to 
detect in most realizable high Reynolds number flows. 

One of the most significant consequences of this refinement is that it  implies that the 
fine-scale structure is Reynolds number dependent. Kuo (1 970) measured the flatness 
factor or kurtosis of both the first and the second derivative of u1 in laboratory flows for 
a range of the turbulence Rsynolds number R, from 12 to 830. The kurtosis of both 
derivatives monotonically increased with R, and no sign of an approach to asymptotic 
values was observed. Wyngaard & Tennekes (1970)) assuming that the logarithm of the 
locally averaged dissipation rate was normally distributed with a variance increasing 
with R,, predicted the skewness S and kurtosis K of aul/axl to increase in a power-law 
manner with increasing R,, and also that - Scc K j .  Their results successfully predicted 
the trends of the existing laboratory data. including those of Kuo (1970)) and the high 
Reynolds number data for the atmospheric surface layer with R, values up to 104. 
Further, Wyngaard & Tennekes (1970) noted that their results imply that the Kolmo- 
gorov normalized spectrum is Reynolds number dependent, in direct conflict with the 
original universal-equilibrium theory. This can be demonstrated by considering the 
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equation for the mean-square fluctuating vorticity, which for steady flows of suffi- 
ciently high Reynolds number can be approximated by (see Tennekes & Lumley 
1972, p. 91) 

where wi = eijk auk/axI. For locally isotropic turbulence (1 1)  can be written in the form 
(Wyngaard & Tennekes 1970; Panchev 1971, p. 183) 

Local isotropy places an additional constraint on the normalized spectrum function 
given by 

i$ = loW (rW2 @l(?kl) d(7kl), (13) 

which can be obtained from (8). As the available data indicate that -S increases 
with R,, Wyngaard & Tennekes (1970) and Wyngaard & Pao (1972) concluded from 
(12) and (13) that the shape of the normalized spectrum function varies with Reynolds 
number, especially in the dissipative wavenumber region. They pointed out that 
further definitive experiments providing high-quality data on fine-scale structure 
were necessary to determine the Reynolds number dependence of the normalized 
spectrum function. 

3. Data interpretation 
The measurements to be considered represent the temporal variation of a signal from 

a hot-wire anemometer (or X-array) located at  a fixed point in a flow field. As the 
theoretical relations presented above are concerned with the spatial or wavenumber 
behaviour of the fine-scale velocity field, the spatial variation of the velocity signal 
must be deduced from the time-varying signal. This presents t’wo problems: first, how 
to relate the hot-wire anemometer signal to the velocity; second, how to interpret the 
time variation of the signal in terms of spatial variation. Another consideration is that 
the hot-wire sensing length is typically larger than Kolmogorov’s length scale 7, so t.hat 
distortion of the measurements of the smallest scales in the flow can occur. These 
problems are important in the study of the fine-scale structure of the velocity field and 
will be considered in this section. 

Taylor’s (1938) approximation is commonly written in the form 

a p t  = - V1 a/axl, (14) 

where Dl is the mean speed in the x1 direction and t is time, or in the wavenumber form 

k, = 2nf/Ul, 

where k,  is the x1 component of the wavenumber vector andfis the frequency. Equa- 
tion (14) involves some tacit assumptions as written so a simple derivation of Taylor’s 
‘ frozen-flow ’ approximation will be given. Let (x, t )  be the fixed laboratory reference 
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system and let (x’, 7) be a co-ordinate system convected a t  a steady convection velocity 
V. Therefore, in the moving frame 

x’ = x-Vt, (16) 

(17) 

where U(x, t) is the fluid velocity in the fixed reference frame. Let 7 = t so that the 
frames will coincide at t = 7 = 0. 

Decomposition of the instantaneous velocity vectors in terms of their mean and 
fluctuating components gives 

U‘(x‘, 7) = U(x, t )  -v, 

- 
U’(X’, 7) = q x ,  t )  -v, u’(x’, 7) = u(x, t ) .  (18)) (19) 

Thus the time derivative of the xi component of velocity in the laboratory frame can 
be related to that in the moving frame via the chain-rule of differentiation: 

The quantity on the left-hand side of (20) is a variable measured by a velocity sensor 
fixed in the laboratory reference frame. If the magnitudes of the velocity fluctuations 
are small compared with the magnitude of V and if the time variation of the turbulent 
structure in the moving frame is small relative to the convective term, i.e. there is a 
‘frozen pattern ’, then the second term on the right side of (20) can be neglected with 
the result that 

(21 1 
aui au; aLj, = -Fa.:/; 

Strictly speaking, we cannot apply an order-of-magnitude analysis to estimate the 
terms on the right-hand side of (20) as they represent instantaneous values. In essence 
we must require that the characteristic time scale of the turbulent structure (or 
‘eddy’) is long compared with the time it takes for the structure to be convected past a 
fixed point, i.e. the location of the velocity sensor. The characteristic dimension of the 
velocity sensor in the direction of V is assumed to be small compared with 7. 

If the convection velocity is equal to the mean velocity of the flow at point x, then 
(21) becomes 

This is a somewhat different statement from ( la)  as it relates, in terms of spectra, the 
frequency spectrum in a fixed frame to a wavenumber spectrum in a reference frame 
moving at  the convection velocity u. If the identity 

- aui 
is used, ( 2 2 )  can be rewritten as 

where (1  9) has also been used. Note that if V is not steady then ( 1  9) is not valid. 
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Alternatively, one can transform the time derivative of the velocity fluctuiLtions 
measured in the moving frame to t,he velocity derivatives in the fixed reference frame 
as 

This relationship could be used to relate measurements made in a moving frame of 
reference to those in a fixed frame. The location of the velocity sensor is X’ = constant 
in the moving frame or x = x ’+Vt  in the fixed reference frame. I n  this case, if 5 is 
sufficiently large that the time-derivative term in the fixed frame can be neglected 
relative to the spatial-derivative product term then the result is 

Equations (22) and (25) express different relations and were derived under formally 
different assumptions. 

There are numerous papers regarding Taylor’s approximation, including those by 
Wills (19641, Favre (1 9651, Heskestad (1 965) and a very comprehensive treatment by 
Lumley ( 1  965). The interpretation of time spectra measured in high intensity turbulent 
flows is complex as Taylor’s frozen-flow approximation is not valid in such a flow 
(Fisher & Davies 1964). Lumley (1965) developed a model to correct the high frequency 
portion of a spectrum for effects caused by deviations from Taylor’s hypothesis. 
Lumley showed that, when certain criteria are satisfied, the main effect a t  high fre- 
quencies is that of a fluctuating convection velocity. That is, the high wavenumber 
isotropic regions are considered to be frozen and convected by a spatially uniform 
fluctuating velocity with the characteristics of the energy-containing eddies. The 
space and time scales of the convecting field are assumed sufficiently large compared 
with those of the high wavenumber convected field that the two are statistically 
independent. A criterion is formed which requires that intrinsic temporal changes in a 
framework moving with the mean velocity are small. The arguments used in for- 
mulating this criterion are particularly enlightening in interpreting the frozen-pattern 
assumption used in obtaining (21) for eddies of various sizes. Note that the convection 
velocity is now considered unsteady and equal to the mean velocity plus vi, a temporally 
slowly varying quantity with a time scale very large compared with that of the high 
wavenumber structure and with a magnitude equal to that of the velocity scale of the 
energy-containing eddies. MTe shall let the magnitudes of the tji be equal to those of the 
ui, i.e. v! = U L, etc. Lumley’s analysis leads to a relation between the measured and 
true one-dimensional spectra of the streamwise velocity fluctuations given by 

- -  

where P,”(kl) is the value of the measured spectrum inferred from the frequency f 
using (15). A solution of (26) subject to the boundary conditions 

lim Fl(kl) = lim P;(k l )  = 0 
I:,+ m I<,+ m 
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was obtained by the present author and is given by 

when (1 - b/a)2 - 4/a < 0. The variable z = In k, while a and b are defined by 
- - -  

a = 2/20; ,  b = (ui+ug)/U: (30) ,  (31) 

zo = In (c/?/), (32)  

and xo is determined by the value of k,, used to cut off the spectrum, i.e. 

where c is a constant (a value of 3 was typically used). The inequality involving the 
coefficients of the differential equation is satisfied for all the flows to be considered 
here, The importance of correcting for deviations from Taylor's hypothesis in searching 
for universal shapes will be demonstrated later. The significance of similar corrections 
for various velocity-derivative statistics can be readily obtained from (26). Wyngaard 

and 

used (26)  to obtain 

For n = 1,  it  is readilv shown that - - -  
E m = €  1 + * + 2 7 ,  [ ui+u%I Ul 

(34) 

where 8, denotes the measured value of the dissipation rate inferred from (au,/at)2 
using (8) and (14). Thus, if the turbulence intensities are of the order of 30 %, as is the 
case on the centre-line of an axisymmetric jet, then E ,  is 45 yo too high. 

An expression which is useful in correctly determining the right-hand side of (12)  
can be obtained by putting n = 2 :  

Using the definition of the normalized spectrum ( l ) ,  along with (36) and (37), one can 

@? and qm refer to the measured values obtained from Taylor's approximation while 
and q refer to quantities obtained from Lumley's correction. Note that (38)  gives the 
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ratio of the measured to the corrected skewness of aul/azl if (12) is a good approxima- 
tion for the flow field. 

Another extension of Taylor's approximation for high intensity, high Reynolds 
number flows was proposed by Heskestad (1966). He used the relation 

- azr,/at = q . a u i p x j ,  (39) 

where 1% = uj + i i j  and all derivatives are relative to a fixed reference frame. It should 
be noted that in this case the convection velocity is the instantaneous velocity in 
contrast to the prex-ious derivation leading to (21). If (39) is applied to the u1 compo- 
nent and the result is squared and averaged then, by use of the assumptions of inde- 
pendence of Fourier components with distant, wavenumbers and local isotropy, (35) is 
obtained for n = 1 .  Similarly, the mean-square second derivative is given by 

which can be shon-n to reduce to (37) (see appendix). Thus Heskestad's corrections to 
the mean-square first and second derivatives of the streainwise velocity fluctuations 
agree with those given by Lnrnley's model. Wyngaard 6: Tennekes (1970) applied 
Heskestad's extension to show that the directly measured skewness of the time 
derivative of t i1 is related to the skewness of the spatial derivative of u1 by 

They also derived a relationship between the two kurtosis variables but much algebra 
and further assumptions were involved. For their curved mixing-layer flow, the 
corrections to the measured skewness and kurtosisvalues mere less than 2 yo. Note that 
(38) and (4l)donot give the same correction to the skewness, but as different statistical 
quantities are corrected in each case this is not surprising. 

Another problem in data aiiaIysis arises because of the dual sensitivity of the hot-wire 
anemometer to both velocity and temperature. As temperature and velocity fluctua- 
tions occur simultaneously in many flows, including geophysical flows, the measured 
hot-wire velocity signal is ' contaminated ' by the concomitant temperature fluctua- 
tions. It is typically assumed that negligible contamination occurs when the overheat 
ratio a,, is of the order of 0.80, especially when the r.m.s. temperature fluctuations are 
of the order of 0.5 "c' or less. This is not always a good assumption, and its validity 
depends on the velocity field statistic or cross velocity-temperature field statistic to be 
measured. Calibrations of the hot wires for our field experiments and some heated 
laboratory flows were carried out for the range of temperatures expected. The resulting 
hot -wire response equation for the velocity, temperature and linearizer-voltage 
fluctuations can be expressed as eId = tcul - P O ,  

where 

the velocity sensitivity in V (m s-l)-l, and 



76 F .  H .  Clzampagne 

the temperature sensitivity in V Y-'. Also, T, is the mean ambient temperature, T, is 
the calibration temperahre and EL is the linearizer output voltage. Now if it is 
assumed that the measured linearized signals are caused by velocity alone, then 

eL = a!ulrn. (43) 

Thus from (42) and (43), zil,,? = u1 - 6 (44) a 

and 8- P- u;,,, = ,u;- 2-  u1 e+ - 6 2  
- -  

a a2 (45) 

on squaring and averaging. Similar reasoning applied to the derivative signal gives 

- -- 
where R,ild = 6,8/[6;8']4. (47) 

The spectral analogue of (46) is 

The co-spectrum F,,Q must be obtained with specially designed hot-wire and cold-wire 
double probes. The cold wire is placed within a Kolmogorov microscale of the hot wire 
so that simultaneous measurements of both field variables from effectively the same 
point in space are available. It should be pointed out, however, that the cold wire 
exhibits a finite velocity sensitivity, and [cf. (&)I one can write (Wyngaard 1971) 

om = e - cul. (49) 

Thus measurements of cross-statistics are further contaminated and must be corrected. 
The double wire probes used in the experiments on the atmospheric surface layer were 
calibrated for both velocity and temperature sensitivity, so values of c have been 
determined for the cold wires. Estimates of the correction to F~,,, were obtained from 
measurements of the ratio of the cospectra of u and 8, normalized by the square root of 
the spectral products. For yk, > 0.05, the corrections to FClm were less than 1 % and 
therefore neglected. It can be easily shown, however, that the value of tilrn 8,, which 
should be zero by local isotropy, is completely dominated by the temperature-sensi- 
tivity cont.amination of the hot-wire signal for most measurements in the atmospheric 
surface layer. 

A further consideration in examining the fine-scale velocity field data is possible 
wire-length attenuation effects. The spatial averaging effects of hot-wire anemometers 
has been extensively treated by 'Wyngaard (1968,1969,1971). Results are presented in 
terms of one-dimensional spectra and are quite useful for estimating wire-length 
attenuation effects. 

All the above corrections were estimated and taken into account to establish confi- 
dence limits on our universal spectral shapes and the values of any estimated statistics 
relating t,o local isotropy. The data to be considered in this paper are defined in table 1 .  
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Much of the data obtained from various investigators were eliminated from consider- 
ation on the basis of the following points: 

(i) spatial resolution of probes much greater than 7;  
(ii) spatial resolution of non-cylindrical sensors not well defined; 
(iii) inadequate sampling time resulting in an inordinate amount of scatter; 
(iv) low-pass filter setting f,, used to avoid aliasing, equal to or less than f k ,  defined 

as f,; = U1/2n7. 
High-quality spectral data were necessary for this study as the second and fourth 

moments of the spectra were required out to about a Kolmogorov normalized wave- 
number of unity. When the cross-component velocity spectra were also available, the 
relationships between the measured component spectra were compared with (9) and 
(10) to determine if inertial and/or dissipative local isotropy existed. Values of the 
kinematic viscosity of air for the various data sets were obtained from appendix 1 
of Batchelor (1967). 

4. Experimental arrangement 
As much of the data to be considered are those of the present author, primarily 

because the experiments were designed specifically to obtain measurements of the 
fine-scale structure of turbulent velocity fields, a description of the experimental 
facilities used will be presented. For any details of the experiments in the other works 
cited, the reader will have to refer to the appropriate reference given. 

4.1. The axisymmetric j e t  

A 7.5 h.p. centrifugal blower supplied the air flow through a preliminary calming box, 
consisting of screens and a honeycomb, to a diffuser and then to a plenum chamber of 
diameter 30 in. The plenum chamber contained two screens to reduce the turbulence 
level a t  the nozzle exit. The air was exhausted through a nozzle with a diameter of4 in. 
and a contraction ratio of 56 : 1 .  Before passing to the blower, the air was initially cooled 
by two air conditioners and cleaned using two Farr HP 100 filters. The temperature of 
the jet a t  the nozzle exit could be maintained to within 4 OF of ambient room tem- 
perature, and the latter did not vary more than 2°F during the entire day. As all 
measurements were carried out at x/d > 50, the temperature was sufficiently close to 
ambient and sufficiently constant that  no corrections were required. The jet facility 
was mounted horizontally with the centre-line of the jet 6 f t  above the laboratory 
floor. This height, as well as the size of the laboratory room, determined the maximum 
usable downstream distance allowable before any distortion of the jet occurred. This 
value is equivalent to x/d z 80. The maximum speed attainable a t  the nozzle exit was 
86 m/s, although most measurements were carried out with an exit velocity of 54 m/s, 
or a Reynolds number of 3.7 x 105. 

Measurements were restricted to the jet centre-line in the region 50 < x/d < 70. 
Although it was desirable to carry out the measurements a t  the highest possible Rey- 
nolds number, important considerations such as the ratio of Kolmogorov’s length scale 
to the wire length I,, and the maximum sampling rate of the analog-to-digital con- 
verter had to be taken into account. The variation of Kolmogorov’s length scale as a 
function of x/d and the Reynolds number Re = &d/v, where U, is the nozzle exit 
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speed and d the nozzle diameter, was determined experimentally. From these results, it 
was decided to carry out the measurements at xld = 70, where the resulting length 
ratio r/l ,  was 0.44. The actual wire length used was 0.37 mm and the diameter was 
about 2.3 pm. From Wyngaard’s (1 968) wire-length attenuation calculations, the 
measured one-dimensional spectrum should be underestimat.ed by of the order of 
10% at k,l,,  = 2 and 20% at k , l ,  = 4. This is within the statistical uncertainty or 
scatter in the data a t  these large wavenumbers and all the data fall below k,l ,  = 4. 
Wyngaard’s analysis is based on Pao’s (1965) spectral form with a value of Kolmo- 
gorov’s universal constant of 1.7. Wyngaard & Pao (1971) have shown that this 
spectral form is not adequate, especially in the high wavenumber region, but it may a t  
least give a reasonable estimate for the wire-length attenuation predictions (Cham- 
pagne, Wygnanski & Pao 1976). Further, the jet spectral data must be corrected for 
effects caused by deviations from Taylor’s hypothesis using Lumley’s model and’this 
results in corrections larger than 20 % beyond Tk, = 0.5. Thus although the jet data 
must be considered with some reservation, they were obtained to provide information 
on high Reynolds number fine-scale structure under controlled laboratory conditions. 

4.2. The low-speed wind tunnel 

The turbulent wake studies were performed in a new closed-return wind tunnel with 
a contraction ratio of 10 : 1 and a free-stream turbulence intensity of 0-05 yo. The test 
section is rectangular in cross-section (2 x 3 ft) and 20 ft in length. The top and bottom 
walls of the test section are mounted on jacks to provide a controlled divergence of 
each wall for establishing pressure gradients. For the wake studies, a slight divergence 
of the walls was used to compensate for boundary-Iayer growth and gave, effectively, 
a zero pressure gradient. Polished stainless-steel cylinders with diameters ranging 
from 0.375 in. to 1.50 in. were used to generate the wake flows. The cylinders were 
mounted a few inches downstream of the test section inlet. The angularity of the flow 
near the test-section inlet was virtually undetectable, i.e. less than 0.1” with respect to 
the axis of the test section, except in the wall boundary layer. Air temperature was 
monitored with a thermistor probe with an accuracy of 0.1 O F  and the air temper- 
ature could be controlled to within * 0.3 O F  of the calibration value by using a water- 
cooled heat exchanger mounted downstream of the axial flow blower. 

Most of the spectral measurements were carried out on the wake centre-line at  
x l d  = 299 for a Reynolds number based on the cyIinder diameter and free-stream 
velocity of 19050. At this Reynolds number, q/lt(;  was 0.73 at xld = 299 and the 
turbulence Reynolds number was 182. Higher Rsynolds numbers were not used to 
avoid wire-length attenuation problems. 

4.3. Laboratory instrumentation 

Velocity fluctuations were measured with Disa type 55D01 constant-temperature 
anemometers in conjunction with Disa type 55D10 linearizers. The linearizers were 
calibrated to known flow conditions in the wind-tunnel test section or in the free-stream 
flow of the mixing-layer facility. An overheat ratio of 0.7-0-8 was used for all wires. 
Lateral-component fluctuations were measured with a symmetric X-array and the 
lateral-component sensitivities were obtained by yawing the probe i 5 O in the plane 
parallel to that of the two wires. The single and X-array hot-wire probes were 
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constructed from 2.3 ,um tungsten wire which was copper/gold plated. The active, or 
unplated, portion of the wires was about 0.4 mm in length and located a t  the geometri- 
cal centre of the whole wire. Typically, thc distance between support stems was 3 mm 
to avoid support-stem flow-field disturbances. For X-wire probes, the wires were 
separated by about 0.4 mm, or one (active) wire length, avalue chosenwith Wyngaard’s 
(1968) results in mind. The length 0.4 mm corresponds to a length-to-diameter ratio 
of 175, the minimum value of this ratio required to keep a reasonably uniform tem- 
perature distribution (Champagne et al. 1967). The velocity fluctuation signals were 
differentiated using an  analog circuit which consisted of a Philbrick P65AU opera- 
tional amplifier used as a follower, a Philbrick/Nexus Model 1003 P E T  operational 
amplifier used as a differentiator, and two Krohn-Hite Model 330 band-pass filters. 
One filter was placed a t  the circuit input to eliminate the high frequency noise from the 
anemometer and linearizer before differentiation and the other a t  the circuit output 
to improve the signal-to-noise ratio and to minimize aliasing. Care was taken to avoid 
phase shift and amplitude distortion of the signal wave forms. The time constant of the 
differentiator was changed for each experiment to  optimize the signal-to-noise ratio 
in the frequency band of interest. The total phase shift of the various differentiator 
circuits was quite linear with frequency over the band of interest and typically the 
overall signal-to-noise ratio was about 20: 1.  

Nearly all signal processing was carried out using a direct on-line computer system. 
The digital data acquisition system is described in detail in Champagne et al. (1976). 

Spectral measurements were obtained by means of the fast Fourier transform (Pao, 
Hansen & MacGregor 1969). The continuous signals were converted to digital samples 
with a resolution of 14 bits plus a sign bit and the maximum sampling rate was 
18000 s-l. The samples were processed in ensembles of 8192, dictated by computer 
memory requirements, and typically 300ensembles or 2.5 x lo6 samples were processed 
to  ensure convergence of the ensemble means, which was monitored through inter- 
mediate print-outs. Spectral windows of 0.10 and 2.18 Hz were used: the 0.10 Hz 
window was used to resolve the large-scale turbulence and these results overlapped with 
the broad-band spectra obtained with the 2.18 Hz window. Analog checks of several 
spectral points fell within & 10 yo of the digital values. Also, the root mean squares of 
the fluctuating signals were determined both from the spectrum and by the usual 
analog method and the results always agreed to within a few per cent. Higher-order 
spectra were measured in the same manner as above, except that the digitized samples 
were raised to  the appropriate power in the computer before fast Fourier transforming. 

The velocity spectra were effectively prewhitened after being sampled by the use of 
transversal filtering. The main purpose of prewhitening after the data have been 
obtained in digital form is to  avoid difficulty with the minor lobes of the spectral 
windows, commonly referred to as ‘spectral leakage ’. The result of this leakage prob- 
lem is to  distort the high frequency end of the spectra where the spectral values are 
five or six orders of magnitude below that of the large-scale energy-containing region. 
One way of circumventing this problem is to measure the spectrum of the time deriva- 
tive of the signal (non-prewhitened) and then compute the spectrum of the signal 
itself from the appropriate identity relating the two. This was carried out for the high 
Reynolds number jet: the results from the measured prewhitened velocity spectrum 
were compared with the measured (non-prewhitened) velocity-derivative spectrum 
and excellent agreement was found. The same comparison without prewhitening the 
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velocity spectrum indicated that the spectral estimates in the high frequency tails were 
considerably overestimated by spectral leakage. 

The hot wires were normally calibrated directly on-line to determine the overall 
gain of the system. Wherever feasible, the overall on-line system and programs were 
checked with known signals. Free-stream spectra for all bypes of signals considered, 
i.e. first- and higher-order spectra of the velocity fluctuations and their derivatives, 
were obtained to  determine relevant noise levels in the data. 

4.4. Field sites 

The results from two of our own field experiments will be presented. The first of these, 
labelled GUMBO, was performed in co-operation with the Air Force Cambridge Re- 
search Laboratories at their site in Minnesota. This was a completely instrumented and 
documented site with the field upwind of the towers specially prepared to provide a 
uniform and known surface roughness. Details of this experiment are discussed 
thoroughly in Champagne et al. (1977) .  Our second experiment was performed in 
conjunction with the Danish Atomic Energy Commission, RIS0,  a t  their 130 m tower 
site in Roskilde, Denmark. The probes were located a t  an elevation of 56 m. The 
special double wire probes, one hot wire and one cold wire, were used in this experi- 
ment. Because of long cable lengths between sensors and electronics and relativcly 
low signal levels, difficulty with 50 Hz line noise pick-up was encountered and the 
spectral data required noise correction. This was carried out, but as the line pick-up 
problem was present in the noise data also, we must assign some degree of uncertainty 
to the corrected data. It is difficult to give precise estimates of the uncertainty, but the 
high wavenumber portions (qk, > 0 . 7 )  of the spectra are probably consistently low 
because of the correction. These data are referred to as FS I1 or Fine Structure 11. 

4.5. Field-experiment instrunbentation 

Two channels of Disa 55M01 constant-temperature anemometers and Disa 55D10 
linearizers were used for velocity measurements. The hot wires used were either 
0-4 mm long and 2 - 3  pm in diameter or 1-35 mm long and 5 pm in diameter. An EG&G 
Model 198 three-component sonic anemometer and associated read-out circuitry were 
used to provide velocity-component measurements from d.c. to  10 Hz, which provides 
an overlap with the hot-wire results (d.c. to the Kolmogorov frequency, about 2 
kHz). The sonic anemometer is an absolute instrument and thus permits an in si tu 
check on the hot-wire calibration. The path length or spatial resolution of the sonic 
anemometer is 20 cm. A small low turbulence intensity calibration facility was de- 
signed and constructed so that the hot-wire probes could be calibrated a t  the field site 
before and after each data run. The temperature of the calibration stream can be 
controlled through use of a small radiator which is cooled using water from a constant- 
temperature bath. The hot wires were therefore calibrated over the required tem- 
perature and velocity range. An MKS Baratron pressure transducer system is used for 
calibration of air pressure measurements. Relevant noise levels in the data were 
obtained by placing the hot wire in the low intensity calibration tunnel when it  was 
operating a t  a speed nearly equal to the mean speed for the data obtained. The noise 
signal was passed through the same processing circuits as the actual data and recorded 
on the analog tape recorder. A Hewlett-Packard Model 2801A quartz thermometer 
was used for mean and calibration temperature measurements. Specially designed 
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sensitive a.c. bridges and 0.6% pm diameter platinum cold wires were used for fluc- 
tuating temperature measurements. Krohn-Hite 3342R filters, differentiator circuits, 
prewhitening and buck-and-gain circuits were used to condition the signals before 
recording. A HoneyweIl Model 7600 fourteen-channel analog tape recorder or a 
Hewlett-Packard Model 3960 four-channel tape recorder was used for recording 
analog tapes. The analog tapes were appropriately digitized using one of our analog-to- 
digital conversion systems. A complete discussion of the digital data analysis for the 
field experiments is presented by Champagne et al. (1977) .  

5. Results and discussion 
5.1. Low Reynolds number spectra 

The one-dimensional energy spectra are Fl(kl), F2(k1) and P3(k1), whose integrals over 
all wavenumbers are u2,, ui and 3, respectively. Taylor's approximation in the form 
k, = 2n-f/ol was used t o  transform the frequency f to the wavenumber kl ,  the x1 com- 
ponent. x1 is the co-ordinate in the direction of the mean flow, x2 is that in the direction 
of the mean velocity gradient and x3 is the co-ordinate perpendicular to the xl, x2 
plane. Unless designated otherwise, the spectra are presented here in Kolmogorov- 
normalized form, i.e. divided by (w5)* as indicated by (1). The value of the dissipation 
rate E was estimated from the second moment of the dimensional spectra using the 
assumption of dissipative local isotropy, or 

_ _  

E = 1 5 L ~ ~ o ~ k f F l ( k l ) d k l .  (50) 

Figure 1 shows the low R, spectra obtained in several flow fields. The spectra collapse 
together for qk,  > 0.1, whereas significant differences occur in the lower wavenumber 
range. The solid straight line indicates a slope of + 5 ,  which is the slope predicted for 
an inertial subrange, although the BA values are probably not large enough to permit 
the existence of inertial local isotropy. As R, increases, however, the lower normalized 
wavenumber components increase in spectral content, apparently developing towards 
inertial-subrange behaviour. Of the flows considered in figure 1, the homogeneous 
shear flow approaches the + J  slope most closely but only over a very narrow wave- 
number range. One requirement for local isotropy is that  the dissipative spectral 
region be at wavenumbers considerably larger than those at which turbulent energy 
production occurs. Figure 2 presents the turbulent energy production and viscous 
dissipation spectra for the homogeneous shear flow in the forms k ,  F12(kl) iD1/ax2 and 
15vk: F,(kl) ,  respectively, where 

and 

(51) 

A reasonable measure of the wavenumber region characterized by turbulent energy 
production is the first moment of the shear-stress spectrum, or 

(53)  
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The Kolmogorov wavenumber is 28 em-' and kp is 0.4 crn-l, so k K / k p  w 70. Cham- 
pagne et al. (1970), on the basis of this result and spectral transfer time arguments, 
indicat,ed that their flow could not be expected to exhibit an inertial subrange but that 
the flow is probably locally isotropic in the dissipation wavenumber region. TabIe 2 
presents results of the streamwise-derivative tests of local isot,ropy based on (7). 
Although results are not presented for the R, = 138 wake case, examination of the 
normalized spectra indicates that no significant difference should be expected from the 
R, = 182 data. Thus, as the latter appear to show reasonable agreement with the 
streamwise-derivative equalities required for local isotropy, the R, = 138 wake flow 
is assumed locally isotropic, at least in the dissipative wavenumber region. The 
Comte-Bellot & Corrsin (1  971) grid flow is also assumed locally isotropic on the basis of 
the observed agreement with the K&rm&n-Howarth ( 1938) relation between transverse 
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FIQURE 2. Spectral distributions of turbulent production and viscous dissipation rrttes for 
homogeneous turbulent shear flow. 

n 

FIGURE 3. Low Reynolds number universal constant. ---, cylinder wske, R, = 138; A, CBC 
grid flow, R, = 41; +, CBC grid flow, R, = 05; 0, CHC homogeneous shear flow, R, = 130. 

and longitudinal correlations and the fact that the dissipation rate obtained from 
the actual energy decay rate agrees closely with that obtained from (50) .  

Closer examination of the low R, spectral data can be achieved by pIotting 

(7kl )%@l(7kl )  V.S. 7k, 

on linear-log paper as shown in figure 3. If an inertial subrange exists, this is equivalent 
to plotting a, vs. y k ,  according to Kolmogorov's second hypothesis, and through the 
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gk, 
FIGURE 4. Second moments of the low Reynolds number normalized spectra. -, cylinder wake 
flow, RA = 138; A, CBC grid flow, RA = 41 ; + , CBC grid flow, RA = 65; 0, CHC homogeneous 
shear flow, RA = 130. 

0 0.2 0.4 0.6 0.8 1 -0 I .2 I 4 

V k ,  
FIGURE 5. Fourth moments of low Reynolds number normalized spectra. -, cylinder wake 
flow, RA = 138; A, CBC grid flow, RA = 41 ; + , CBC grid flow, RA = 65; 0, CHC homogeneous 
shear flow, RA = 130. 
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inertial-subrange region a line fit to the data should have zero slope. It is evident that 
no inertial subrange exists for these low R, turbulent flow fields. Figure 4 is a linear 
plot of ( ~ k , ) ~  @,(yk,) us. yk,. The second moments of the spectra exhibit peak values of 
0.24, which occur at yk, w 0.10 for the sheared flows and a t  a slightly higher wave- 
number, about yk, w 0.12, for the non-sheared grid flows. The data of Stewart & 
Townsend (1951) and Kistler & Vrebalovich (1966) on non-sheared grid flows also 
show that the peak occurs at yk, z 0.12. The spectral region where both inertial 
transfer and viscous effects are important appears to be roughly 0-05 < yk, < 1.  The 
fourth moments of the spectra, shown in figure 5, demonstrate how closely the spectra 
collapse together in the high wavenumber region. This indicates that the fine-scale 
structure of the different flow fields is similar at least for the R, range presented here, 
viz. 40-138. Although Kolmogorov scaling appears to be applicable for these low R, 
values, the entire form of the spectrum could change as RA increases to some suffi- 
ciently large value and then remains universal as required by the original Kolmogorov 
hypothesis. If the normalized spectral shape does not attain a universal form, but 
rather varies continuously with R,, this would be consistent with the modified hypo- 
thesis. The fourth-moment curves have peak values of about 9.9 x occurring at  
yk, N 0.3-0-35. No data on the skewness of au,/ax, are available for most of these 
flows. The normalized spectral results for the R, = 88 cylinder wake flow are essen- 
tially identical to the above. . 

Figures 6-8 show the u2 and u3 spectra, which in normalized form are @,(yk,) and 
@,(yk,), for the homogeneous shear flow. Also shown in the figures by a solid line is a 
curve computed from the measured u1 spectrum using the isotropic relation (9). The 
computed curve is in fair agreement with the measured spectra although it tends to be 
high at larger yk,. As shown in table 2,  the isotropic equations relating the streamwise 
derivatives were found to be a good approximation for this flow. Further, from spatial 
correlat,ion measurements, the results 

were obtained. Thus the results for homogeneous shear flow appear to be consistent 
with dissipative local isotropy. Further evidence against the existence of an inertial 
subrange in this flow is presented in figure 9, which shows 

o*75(?jk1)# @i(yk,) ,  i = 2,3 .  

Very similar results were obtained for the R, = 182 wake flow. Figure 10 shows the 
fourth-moment results for the 0, spectra obtained from different straight hot wires 
and an X-wire array. The spectral levels for normalized wavenumbers greater than 0.4 
are consistently slightly higher than those shown in figure 4, even considering the 
inevitable scatter in the data. The squares represent results for which the wire was 
0.37 mm long, fc/fk was 1.04 and the data were noise corrected in the mean square by 
subtracting off the background noise level from the entire system, determined by 
placing the hot wire in the free stream and running the tunnel at  the corresponding 
mean speed. The dotted data were taken with a wire 0.4 mm long with f,/fk = 0.80, 
and no noise correction was applied. The solid line represents data from an X-wire 
array where the wire length was 0.42 mm and the wire separation was about 04-0.5 
mm. This plot indicates the degree of statistical scatter and the reproducibility 
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FIGURE flow. 0, us 

achieved, gives a check on the spatial resolution of the X-wire array, and provides 
some confidence in the calibration technique for the X-wire array. The skewness 
obtained by determining the area under the data after an extrapolation of the tail to 
zero and then using (12) was - 0.64. The extrapolation was carried out using a ninth- 
order least-squares polynomial fit t,o the noise-corrected straight-wire data. Least- 
squares polynomial fits of the form 

lnFl(k1) = B,+B,x+B,x2+ ... +B,+,x* (54) 

were used, where x = In (TIC,) or In k,. The directly measured value obtained from 
sampling the derivative signal, determining the moments and averaging was - 0.48. 
If the directly measured value is correct, this is a difference of 33% which is not 
attributable to deviations from Taylor's hypothesis, to 'leakage ' problems from the 
window tails as the data were digitally prewhitened, nor predominantly to effects 
caused by the lack of perfect local isotropy of the Aow field. The difference is probably 



The  Jine-scale structure of the turbulent velocity j e ld  

0.40 

0.32 

- 0.24 
-Y 
P - 
G 
n - - 
Y 
P - 0.16 

0.08 

89 

1 

FIGURE 7. Normalized cross-component velocity spectra for homogeneous shear flow. 0, u2 
spectrum; 0, us spectrum; - , computed spectrum. 

0 0.2 0.4 

FIGURE 8. Normalized fourth moments of cross-stream velocity spectra, for homogeneous shear 
flow. , u2 spectrum ; 0, us spectrum ; - , computed spectrum. 
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a result of the Reynolds number being too low for ( 1  1 )  to be a good approximation. 
Perhaps the difference is a crude measure of how close to 'sufficiently high Reynolds 
number ' a given flow is. Further checks on local isotropy are presented in figures 11- 
13. The solid line in the figures is the curve computed from the measured u1 spectrum 
using the isotropic relation (9). The computed curve is in fair agreement with measured 
spectra but is again consistently higher than the measured spectra in the larger wavc- 
number region. The equalities ( 7 )  are reasonably satisfied as shown in table 2. Thc 
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b 
,'b 

t 
FIGURE 1 1 .  Normalized cross-component velocity spectra for two-dimensional wake flow; 

R, = 182. a, u2 spactrum; ---, us spectrum; __ , computed spectrum. 

curious bump in the u2 spectrum occurs at a Strouhal number in the region of 0.08 and 
is similar to t,hat, observed by Uberoi & Freymuth (1969), who found a bump a t  a 
Strouhal number of about 0.09. Their data were obtained a t  R e  = 2160 and x / d  = 200. 
The spectral bump is illustrated again in figure 14, which shows the dimensional wake 
spectra. These low Strouhal number peaks differ from the classical result of 0.21 for the 
same Reynolds number range, but this value was obtained from measurements very 
close t,o the cylinder, typically x / d  < 10 (Roshko 1960). kK is just l/r. 

5.2. Turbulent j e t  spectra and Lumley's correction 

Laboratory flows with Kolmogorov microscales of the order of 0.5-1 mm (reasonable 
wire lengths) seem to be limited to  R, values of around lo3. The laboratory flow most 
commonly used to  obtain large R, values is an  axisymmetric free jet issuing into 
quiescent surroundings. As the length scales, including 7, increase linearly with dis- 
tance from the source in a round jet, this permits the possibility of moving downstream 
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FIUURE 12. Normalized second-moment spectra of wake flow. u, u2 spectrum; ---, u, spectrum; 
-, computed spectrum. 

v k ,  
FIGURE 13. Normalized fourth moment of cross-component velocity spectra for two-dimensional 

wake flow; R, = 182. 0, u2 spectrum; ---, u, spectrum; - , computed spectrum. 

to obtain values of T / l ,  that are acceptable from the standpoint of spatial resolution. 
The measurements for the present experiments were carried out at  x/d = 70 on the jet 
centre-line. In order to minimize wire-length attenuation effects and yet achieve a 
reasonably high R,, the jet facility could not be operated at its maximum output. The 
resulting operating conditions gave R, = 626 and v/lt,, = 0.44 (table 1) .  Figure 15 
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FIGURE 14. One-dimensional energy spectra of the velocity-component fluctuations in the 
R,  = 182 wake flow. 0. u1 spectrum, F,(k,); 0 ,  u2 spectrum, F,(k,);  A, u3 spectrum, F3(kl) .  

t = f  I I I I I  I I L I I I  I I l l 1  I I l l  I I l l  

I 05 

Io6 1; 

FIGURE 15. One-dimensional spectra of streamwise- and lateral-component velocity fluctuations 
for an nxisymmetric jet; Re = 3.7 x 106, x/d = 70, r / d  = 0. 0, F l ( k J ;  0 ,  F2(kl). 
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k ,  x (rn-l)  

FIUURE 16. Dimensional fourth moment of streamwise spectrum for jet flow. 0, moasured 
spectrum ; ---, eleventh-order least-squares curve fit to data; -, Lumley-corrected spectrum. 

shows measurements of the lpl(kl) and F2(k,) spectra in dimensional form. The measured 
spectra were corrected for noise. Analysis of the data indicates that neither relations 
(9) nor relations (10) are satisfied and the flow appears to be locally anisotropic. Rela- 
tions (7) are also not satisfied (table 2) as the ratio (a~ , /a t )~ / (au , / i%)~ ,  equivalent to the 
spatial-derivative ratio from Taylor's approximation, is 0.70, which is far from the 
isotropic value of 0.50. Unfortunately, the turbulent intensities in a free jet are quite 
large, e.g. a typical value is ?Tl/Dl w 0.30 on the centre-line of a self-preserving axisym- 
metric jet, where the tilde denotes the r.m.s. value. The interpretation of time spectra 
and directly computed statistics such as moments of derivative signals measured 
in high intensity turbulent flows is complex, as previously pointed out, because 
Taylor's approximation is not valid for such flows. A correction for effects caused by 
deviations from Taylor's hypothesis on interpreting the mean-square velocity deriva- 
tives can be obtained from (35) and (39). For the u2 component, one can show that 

The resulting ratio (aul/a2,)2/(au,/a~,)2 computed from (35) and (55) is 0-63, which is 
somewhat greater than the value 0-58 for the lower R, wake. 

The importance of correcting for deviations from Taylor's hypothesis in investi- 
gating spectral shapes can be realized from considering figures 16 -20. Figure 16 shows 
the effect of the Lumley correction on the dimensional fourth moment of the jet 
spectrum. The corrected spectrum was computed from (29) using an eleventh-order 
least-squares polynomial fit to the measured data in the form of (54). The eleventh- 
order fit and the measured spectral data are also shown. At k, x 5800m-', which 
corresponds to Kolmogorov's wavenumber, the measured spectral value is 238 yo 



The fine-scale structure of the turbulent velocity field 95 

loo 3 

‘I kl 

-, corrected spectrum. 
FIGURE 17. Second moment of normalized jet spectra. 0, measured spectrum; 

greater than the corrected spectral value. The various necessary criteria posed by 
Lumley for applicability of his solution were satisfied for the entire region over which 
the correction was applied. The effect of the correction on the normalized spectrum 
is somewhat diminished as the corrected dimensional spectrum is divided by the 
corrected value of the dissipation rate to the appropriate power. The normalized second 
moment of the measured spectrum, (qm k l )2  @‘;n(qm k l ) ,  and of the corrected spectrum, 
( ~ k l ) ~ @ l ( q k l ) ,  are presented in figures 17 and 18. qm and q refer to the Kolmogorov 
microscales computed from the measured and corrected dissipation values, respec- 
tively. Similarly, normalization of the measured and corrected dimensional spectra 
was performed using the appropriate dissipation values. Figure 19 shows the normal- 
ized fourth moment of the measured and corrected jet spectra, the R, = 41 1 boundary- 
layer data ofMestayer (1975), and the low R, (R, = 138) cylinder wakedata,previously 
presented in figure 5. The boundary-layer and corrected jet spectra, which have similar 
values of R,, agree quite well. Mestayer’s data were obtained in a stratified boundary 
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FIGURE 18. Second moment of normalized jet spectra. !J, measured spectrum; 
-, corrected spectrum. 

'Ik, 
FIGURE 19. Fourth moments of normalized spectra. 0, measured jet spectrum; --, corrected 
jet spectrum; A, cylinder-wake spectrum, RA = 138; A, Mestayer, boundary layer, RA = 411. 

layer over water and the turbulent intensities were about 9 %. Lumley's correction 
was not applied to Mestayer's data in view of the low intensity. 

The area under the normalized fourth-moment curves for the jet flow was deter- 
mined after extrapolating the high wavenumber tails to zero using least-squares poly- 
nomial fits as before. If the flow is assumed locally isotropic, (12) gives 

and the  corrected value S(8ul/8x,) is - 0.80. The value computed directly from the 
au,/at signal is - 0.67. From (4l) ,  the corrected directly measured value of #(au,/axl) 

syaul/8xl) = - 1.01 
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FIGURE 20. Universal constant. 0, from measured jet spectrum; - , from corrected jet 
spectrum; A ,  from cylinder-wake spectrum, R,, = 138. 

is - 0.68, which is 18 yo lower in magnitude than the value obtained from (12). Thus 
( 1  1) appears to be a better approximation in the high R, jet flow than in the lower R, 
wake flow discussed previously. The directly measured skewness of the second deriva- 
tive a2u,/at2 was found to be 0.1 15. No correction for effects caused by deviations from 
Taylor’s approximation was applied or derived, so the significance of the non-zero 
value with respect to the existence of local isotropy was not determined. The apparent 
a, values are shown in figure 20. The jet results exhibit a saddle-like effect, a minimum 
occurring in the apparent inertial subrange a t  a wavenumber of about yk, = This 
minimum is considered to be real and perhaps can be attributed to the double- 
structure nature of the flow field, i.e. a large-scale vortex-like motion interacting with 
and driving the fine-scale turbulence. The values ay from the measured spectrum are 
about 0.43 5 0.02, which seems quite low, whereas the corrected values are about 0.48. 
Kholmyanskiy (1972) found a large increase in a,  when attempting to correct for 
deviations from Taylor’s hypothesis. Using a, + u,, the instantaneous longitudinal 
velocity component, as the correct convection velocity, he reported an increase from 
0.45 (using a,) to  0.62. His measurements were carried out over the Russian Steppes, 
where the turbulent intensity would presumably be large, although no values of turbu- 
lent intensity were given. 

The computed Lumley correction for the measured dimensional spectrum F,(k,) 
extends into the lower wavenumber region as far as k, = 7 m-l, where the ‘true ’ or 
corrected spectral value is 4 % lower than t,he measured value. Correction of the cross- 
component spectrum using Lumley’s model has yet to be carried out. Thus any definite 
conclusions regarding the existence of local isotropy from such criteria as (9) or (10) in 
the high intensity jet flow cannot be formed until all the appropriate corrections are 
made. Some of the above jet results seem to contradict the findings of Gibson (1963). 
He found that the relationship between the cross-component spectra and the stream- 
wise spectrum was consistent with local isotropy and also that the three velocity- 
component intensities were nearly equal on the jet centre-line. The results of the 
present study were that CJO, = 0.29 and C2/fll = 0.24, which are nearly identical to  
the results obtained by Wygnanski & Fiedler (1969). The fact that Gibson’s u1 and u2 
component intensities were nearly equal would correspond to  a relative increase in the 

4 F L M  82  
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’Ik, 
FIGURE 21. Second moments of high Reynolds number normalized spectra. -, Lumley- 
corrected GTTMBO spectrum; ---, FS LI spectrum; A, Wyngaard spectrum; +, Williams 
spectrum. Solid straight line has a slope of + ). 

u2 spectral level at least in the lower wavenumbers and perhaps into the apparent 
inertial subrange. Wire-length attenuation was certainly also a factor in Gibson’s data 
as r/Z, was 0.14 for his study, which according to Wyngaard (1969) would lead to 
underestimation of e by 25% and significant attenuation for qk, > 0.1 (Wyngaard 
1968). In  view of this and the disagreement in turbulence intensity values with more 
recent results, Gibson’s data were not considered further. 

5.3.  High Reynolds number spectra 

Recently, many attempts to obtain high quality data on the fine-scale structure of 
turbulent velocity fields in high Reynolds number geophysical flows have been under- 
taken by several groups including our own at UCSD. Of all the geophysical flows, the 
surface layer of the atmospheric boundary layer proves particularly attractive because 
standard laboratory instrumentation is more than adequate to provide the required 
measurements. High Reynolds number spectral data from four experiments on the 
atmospheric boundary layer are shown in figures 21-25. The GUMBO spectral results 
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0 0.2 0.4 0.6 0.8 I .o 1.2 1.4 

t l x - 1  

FIGURE 22. Normalized second moments of high Reynolds number spectra. -, Lumley - 
corrected GUMBO spectrum: ---, FS I1 spectrnm; A, Wyngaard spectrum; +, Williams 
spect riun. 

FIGURE 23. Nonnalized fourth moments of high Reynolds nulnber spectra. -, Lumley- 
corrected GUMBO spectriiin; ---. FS I1 spectrnm; A, Wyngrtard spectrum; +, Williams 
spectrum. 

0 0.4 0.6 0.8 1 .o 1.2 1.4 
11 k ,  

FIGURE 24. Normalized sixth moments of high Reynolds number spectra. ---, Lumley-cor- 
rected GVMBO spectrum: ---. F R  I1 spectriiin; A. \17-pgaard spectrum : + . U'illiams spectrum. 

4-2 
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FIGURE 25. Universal constants from high Reynolds number data. __ , Lumley-corrected 
GUMBO data.; ---, FS I1 data; A, Wyngaard data; +, Williams data. 

'Ik, 

were obtainedover a 15 min period with R, =_ 7000 (see table 1). The turbulentintensi- 
ties measured over this time period were Gl/Ul = 0.18, G2/nl  = 0.29 and ii3/ul = 0.069, 
where u1 and u2 are the horizontal components and u3 the vertical component of the 
turbulent velocity field. Lumley's correction was applied to the measured spectral 
data and the corrected spectrum was determined from (29) using a ninth-order least- 
squares polynomial fit to the measured spectrum in the form of (54). q/Z, was 0.68 so 
the spatial resolution of the hot wire was adequate since, according to Wyngaard's 
(1968) analysis, the spectral attenuation is about 10 yo at yk, = 1.5. No noise correction 
was applied to  the data. The FS I1 data were obtained over two 20 min periods for 
which the mean wind speed was steady at 11 m/s, Cl/ul was 0.1 1 and the resulting R, 
was 13 000. These are the highest RAdata available, although they should be interpreted 
as a representative lower bound for this case because of the already discussed line noise 
problem. Lumley's correction was not applied to the spectral data in view of the lower 
intensity and the uncertainty discussed above. yll, was 0.82 so wire-length attenuation 
is negligible over the wavenumber region of interest. 

The Kolmogorov normalized spectra of the derivative 8ul/8xl are presented in 
figure 21. A.n inertial subrange appears to exist for more than one decade in wave- 
number in the Lumley-corrected GUMBO data and for more than two decades in the 
FS I1 data as is apparent from the agreement with a + slope, indicated by the solid 
straight line. Also shown for comparison are the surface-layer data of Wyngamd (see 
Wyngaard & Pao 1972) and Williams (1974), which show good agreement with the 
present data for wavenumbers yk, > 10-3. 'Wyngaard's data represent, for a given 
normalized wavenumber, the average of eight separate spectral estimates, each deter- 
mined from a 15 min sample of the velocity derivative. The RA values differ for each 
estimate, varying from 1600 to 5000 with an average value of about 2800. Wyngaard 
used (36) to correct his measured values of E ,  but no correction was applied to the 
measured dimensional spectra. Thus the normalized spectra are only partially corrected 
for effects caused by deviations from Taylor's approximation. During Wyngaard's 
experiments, iil/ul was on average about 16 yo. As the spectral data were averaged 
over several runs with arange of Reynolds numbers, and as the E values were corrected, 
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further corrections using Lumley’s model were not attempted. No noise corrections 
were applied. Williams’ data were noise corrected but no corrections to the measured 
spectra nor the value of E were made for deviations from Taylor’s hypothesis. Only the 
u1 component was measured and E l / a l  was reported to be 10 yo. Figure 22 shows the 
normalized derivative spectra on a linear-linear plot. The spectra agree quite well and 
exhibit peak values of about 0.21 a t  normalized wavenumbers of about 0.09-0.10. 
Comparison with figure 4 shows that the peak value decreases with increasing RA, 
while the normalized spectral content in the upper portion of the dissipative region 
increases with increasing RA. The normalized wavenumber a t  which the peak occurs 
appears tto be invariant with RA. Each set of normalized spectral data satisfies the 
constraint (13) and thus is self-consistent. The fourth moments of the normalized 
spectra are shown in figure 23. The magnitude and position of the peak values of all 
four sets of data agree well. The R, range is rather large for the data presented in figures 
21-25, primarily because of the relatively low value for Williams’ data. Williams 
located his probes quite close to the ground a t  x = 2 m and this is undoubtedly the 
reason for the relatively small value of A,, 2.8 em, he obtained. The A, values from the 
jet, GUMBO and FS I1 experiments are 0-76, 11.8 and 20.0 em respectively. As the 
turbulent intensity increases with decreasing x the value of z’il/al = 0.10 seems low 
and possibly this could be attributed to the relatively short averaging time of 234 s. If 
the measured intensity is indeed low then the true RA is larger and also the possibility 
that the data require correction for deviations from Taylor’s hypothesis arises. This 
would tend to lower the high wavenumber region of the spectrum. In any case the high 
RA normalized spectra appear to collapse together nicely in the high wavenumber 
region, again indicating the usefulness of Kolmogorov scaling. Values of #(au,/ax,) 
inferred from (1  2) were computed after least-squares polynomial extrapolation to 
yk, = 2.0 for integration. These values are presented in table 3 along with the directly 
measured value from the aul/at signal. The ratio of the skewness inferred from (12) 
to the directly measured value appears to decrease with increasing RA, approaching 
unity at  larger R, values. That is, the turbulent vorticity budget (1 1 )  appears to be a 
good approximation in the higher RA flow fields. The value of this ratio for FS I1 is 
undoubtedly less than unity because of the line noise problems mentioned previously, 
which could cause an overestimation of the directly measured skewness and an under- 
estimation of the skewness value inferred from (12) because of the noise correction 
procedure. 

The sixth moments of the normalized spectra are presented in figure 24 and give some 
indication of the quality of the fourth-moment data. The peak amplitude appears to 
occur a t  a normalized wavenumber of about 1.1. Because of problems with the signal- 
to-noise ratio and wire-length attenuation, it is not yet possible to determine the 
entire sixth moment of the normalized spectrum in a high Reynolds number flow. 

Values of the ‘universal constant’ a1 are presented in figure 25. The corrected 
GUMBO value is 0.50 5 0.02 while the F8 I1 value is about 0.56 & 0.03. These results 
agree well with those of Williams, who gives a value of 0.50 & 0.03, and those of ‘Wyn- 
gaard & Pao, who obtained 0.53 & 0-02. The latter found that their al estimates exhi- 
bited no stability dependence. No observable trend in the value of a1 with increasing 
RA was apparent. 

For the GUMBO experiment, the shear-stress co-spectrum was measured directly 
(Champagne et al. 1977). The plot of frequency times the co-spectrum peaks at about a 
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FIQURE 26. Evolution of fourth moment of normalized spectra with turbulence Reynolds 
number. A,  cylinder-wake spectrum, R, = 138; ---, Lumley-corrected jet spectrum, RA = 626; 
-, Lumley-corrected GUMBO spectrum, R, = 7000. 

normalized frequency fz/ul of 0.05, which agrees well with the results of Kaimal et al. 
(1972) for similar stability conditions. Thus a measure of the wavenumber region char- 
acterized by shear production of turbulent energy is kp x 0-077 m-1. As kK = 1538 m-1, 
then kK/kp  w 2 x 104, which seems large enough to expect inertial and dissipative 
local isotropy. Further, sonic anemometer results with a spatial resolution of 20 cm 
indicate that the ratio of $ between F3(kl) and Fl(kl) is realized at  a wavenumber of 
2m-1, or qk, x 1 x 10-3. Although no fine-scale measurements of u2 and u3 fluctuations 
are available for GUMBO or the other atmospheric flows presented here, it will be 
assumed that the fine-scale structure of these flow fields is isotropic on the basis of the 
GUMBO results and those of Kaimal et al. (1972). 

The Reynolds number dependence of the high wavenumber regions of the normalized 
spectra is summarized in figure 26. The R, = 138 wake data, the corrected jet data and 
the corrected GUMBO atmospheric-boundary-layer data are presented. As RA in- 
creases the normalized spectrum function O1(qk,) decreases in the lower part of the 
dissipative wavenumber region up to qk, w 0.35 and increases at the higher end, i.e. 
for qk, > 0.45. The maximum in the normalized fourth moment of O1 decreases slightly 
in magnitude and moves towards larger wavenumbers as R, increases. In  the frame- 
work of the modified hypothesis this is the expected behaviour of Ol from considera- 
tion of the constraints (12) and (13), and the observed increase in -#(au1/8xl) with 
increasing R, (Wyngaard & Pao 1972). Wyngaard & Tennekes (1970) pointed out that 
systematic departures from scaling laws which use a mean or average dissipation rate 
should be expected. The departures, attributed to the spatial variation of dissipation, 
would depend on the Reynolds number. Table 3 presents values of the ratio 

which is remarkably constant over the entire range of Reynolds numbers considered 
here, again consistent with the modified hypothesis. However, the predicted power-law 
behaviours i3(aul/axl) - RP and K(au,/ax,) - Rf tend to overestimate the actual 
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RA = 138 
(wake flow) 

- 6.71880833 00 
- 8'59519793 00 
- 4.48568063 00 
- 3.05691382 00 
- 1.71755633 00 
- 6'06441933 - 01 
- 1.2747098E-01 
- 1.54850453 - 02 
- 9.99082903 - 04 
- 2.63120473 - 05 

RA = 626 
(jet flow) 

- 1.92941443 01 
- 6.33744763 00 
- 1.88053913 00 
- 1.16046773 00 
- 8.26777303 - 01 
- 2'97854433 - 01 
- 243002934E - 02 

1'44727143 - 02 
5'68446233 - 03 
9.00490663 - 04 
6'99193753 - 05 
2.18651973 - 06 

TABLE 4 

R, = 7000 
(atmospheric-boundary- 

layer flow) 

- 5.34741153 00 
- 5.70159133 00 
- 1'73409853 00 
- 1.15958193 00 
- 7.46075543 - 01 
- 2.72779633 - 01 
- 5.58215903 - 02 
- 6.4303002E - 03 
- 3.89674833 - 04 
- 9.625871 1E - OG 

variation with R,, especially at  larger R,. Further, examination of figures 23 and 26 
indicates that the rate of variation of spectrum shape with R, decreases a t  the larger 
Reynolds numbers. This brings another consideration to mind. Perhaps Kolmogorov's 
ideas should not be expected to apply until RA is sufficiently large that the vorticity 
budget (1  1) is satisfied, i.e. until the turbulent vorticity field is largely decoupled 
from the (usually anisotropic) structure of the mean flow field. In  any case, the 
available evidence indicates that Kolmogorov scaling leads to normalized spectral 
functions that are universal in the sense that they apply to the fine-scale dissipa.tive 
structure of all turbulent flow fields with the same turbulence Reynolds number. The 
normalized spectral functions vary with turbulence Reynolds number in a manner 
consistent with the modified hypothesis. The values of the Kolmogorov normalized 
functions shown in figure 26 can be determined from a least-squares polynomial fit of 
the form 

InQ1(ykl) = B l + B , Z + B , Z 2 +  ... +B,+lZn, 

where 2 = In (yk1) and the coefficients for the three curves shown can be obtained from 
table 4. 

(56) 

6. Summary and conclusions 
The fine-scale structure of many turbulent velocity fields is examined for evidence of 

universal behaviour and local isotropy. Existing data as well as new results from recent 
studies of many different flow fields including wakes, jets and the atmospheric bound- 
ary layer are investigated. Data interpretation problems are considered, including the 
effects of concomitant temperature fluctuations on the measured hot-wire signal. Also 
revealed is the importance of considering the effects on spectra caused by deviations 
from Taylor's approximation in high intensity flows. Lumley's (1965) model is used to 
correct the high frequency portion of the measured spectra for those effects. An analy- 
tical solution to Lumley's correction equation is presented and applied to the jet and 
atmospheric-boundary-layer data. Corrections to the jet spectrum indicate that the 
measured spectrum is overestimated by 200% for frequencies of the order of that 
corresponding to the Kolmogorov length scale. 
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The low RA flows considered appeared to exhibit dissipative local isotropy, including 
the cylinder wake flow and the nearly homogeneous shear flow. How well some of the 
various criteria for the existence of local isotropy were satisfied for these flows is pre- 
sented and discussed. It is not possible to assess whether the relatively high R, axisym- 
metric jet flow is locally isotropic until all the statistics used in the criteria are corrected 
for deviations from Taylor’s approximation. Kolmogorov scaling of the spectra is 
shown to lead to  normalized spectral functions that are universal in the sense that they 
describe the fine-scale spectral behaviour of all turbulent flow fields with a similar 
value of the turbulence Reynolds number. The normalized spectral functions vary with 
turbulence Reynolds number in a manner consistent with the modified hypothesis of 
Kolmogorov. Expressions for the Kolmogorov normalized spectral functions a t  three 
turbulence Reynolds numbers are given in a polynomial form obtained from least- 
squares fits to  the data. The ratio 

predicted by Wyngaard & Tennekes (1970) to be independent of RA within the frame- 
work of the modified hypothesis, is found to be remarkably constant and equal to 
- 0.25 over the RA range 180-13 000 considered here. However, examination of the 
normalized fourth moments of spectra for various Reynolds numbers indicates that the 
rate of variation of spectral shape with RA decreases a t  the larger Reynolds numbers. 
This leads to  the speculation that Kolmogorov’s ideas do not apply until the turbulence 
Reynolds number is sufficiently large that the vorticity variance equation reduces to a 
balance between production by turbulent vortex stretching and viscous dissipation of 
vorticity. Thus the vorticity budget would be largely independent of the structure of 
the mean flow field. Further definitive experiments in high RA flows are required to 
investigate the trends shown here and to provide new information relevant to the 
existence of local isotropy in the fine-scale structure of the velocity field. This is 
especially true in view of recent results indicating apparent anisotropy of the fine-scale 
temperature fields for many of the flow fields considered here. 
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Appendix 
The isotropic tensor form for a2u, a2u, -- 

axk ax,,, ax, axn 

was required in the reduction of (40). The necessary form of the sixth-order isotropic 
tensor was determined using the invariance theory as presented by Robertson (1 9.10) 
with the result 

- 6(si, sjn 

+ 4, sin sjm + 8~ sjn aim + si, sj, smn + ajik ail smn 

+ s k n  s jm + sj, sin s,m + s j ,  s p n  S in ,  

a%, 2 
sik s j n  h n  + sik 81% s j m  sjik Sin &m f sj, 81, a i m ) ]  (q) . (A 1 )  

This expression also proves to be useful in evaluating the viscous dissipation term in the 
turbulent vorticity budget if one assumes that the fine-scale structure of the turbulent 
field is locally isotropic. The result is readily shown to be 

y-2- ao.aW, = 35 (%) = 35 som k:Fl(kl) dk,, 
axj axj ax; 

where (33) has been used. 
The production term oi wj  aui/axj in the vorticity budget represents the generation 

of mean-square vorticity by the interaction of the turbulent straining and turbulent 
vorticity fields. This term can be evaluated for a IocalIy isotropic velocity field using 
the isotropic tensor form 

This allows evaluation from the directly measured #(au,/ax,) values. Both (A 3) and 
(A 5 )  were used to express (1  1) in its isotropic form given by (12). 
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